Instructor: Linda Schweitzer, Associate Professor
Office: 289 SEB (Science and Engineering Building)
Office hours: before class; also by appointment
Phone: 248-370-2092
Email/text: schweitz@oakland.edu

Textbook: none
Course Materials: Regulatory Guidance Documents available on web
Course Notes handed out in class and posted on Moodle

Feb. 20-March 1 University Closed for Winter Break

Final Exam: Tuesday April 27 7:00-10:00 PM

Grading and Assessment: Straight Scale (e.g, 95%-100% = 4.0).
Quizes (2): 20% each. Final Exam: 25%. Homework: 20% In-Class activities: 15%
Attendance not graded. Make-ups only with prior permission (or certified emergencies)

Grading Scale:
Considered “A”s Considered “B”s

<table>
<thead>
<tr>
<th>GPA</th>
<th>2.0-2.9</th>
<th>3.0-3.2</th>
<th>3.3-3.5</th>
<th>3.6-3.8</th>
<th>3.9-4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>95.00-100</td>
<td>92.63-9.49</td>
<td>90.25-92.62</td>
<td>87.88-90.24</td>
<td>85.50-87.87</td>
</tr>
<tr>
<td>3.4</td>
<td>78.38-80.74</td>
<td>76.00-78.37</td>
<td>73.63-75.99</td>
<td>71.25-73.62</td>
<td>68.88-71.24</td>
</tr>
<tr>
<td>3.3</td>
<td>78.38-80.74</td>
<td>76.00-78.37</td>
<td>73.63-75.99</td>
<td>71.25-73.62</td>
<td>68.88-71.24</td>
</tr>
<tr>
<td>3.2</td>
<td>78.38-80.74</td>
<td>76.00-78.37</td>
<td>73.63-75.99</td>
<td>71.25-73.62</td>
<td>68.88-71.24</td>
</tr>
<tr>
<td>3.1</td>
<td>78.38-80.74</td>
<td>76.00-78.37</td>
<td>73.63-75.99</td>
<td>71.25-73.62</td>
<td>68.88-71.24</td>
</tr>
<tr>
<td>3.0</td>
<td>78.38-80.74</td>
<td>76.00-78.37</td>
<td>73.63-75.99</td>
<td>71.25-73.62</td>
<td>68.88-71.24</td>
</tr>
</tbody>
</table>

Considered “C”s: 2.0-2.9; Considered “D”s: 1.0-1.9

Formula: GPA range = % correct/23.75 – % correct /25.00

Related ENV Courses: not required, but helpful
368 Haz Materials Regulation, 452 Pollution Prevention, 461 Env Law and Policies
484 Toxicology

What is Toxic Substances Control?
TSC is a multifaceted approach to reducing toxic substances and reducing exposure to
them in the environment, home, and occupational settings. The most important strategy
in reducing exposure to toxic substances is by reducing their manufacturing,
transportation, use and disposal. The mantra of the environmental movement is,
“Reduce, Reuse, Recycle….in that order”. Implied within, is replacement of toxic
substances with less toxic alternatives.
Goal: To protect human and ecological health; instill ethics, concern and competency for
future practitioners in industry or environmental field dealing with toxic substances
Learning Objectives – conduct quantitative and qualitative human and ecological risk assessments; examine case studies and be able to critically evaluate industrial processes and offer meaningful alternatives to the generation of toxic substances and hazardous wastes; understand the role of the regulatory agencies; understand basic environmental laws and citizen’s rights

Topics (Schedule will tentatively follow this order)

I. Introduction to Toxic Substances: Chemicals of concern - Examples:
Aromatic and Aliphatic Hydrocarbons, halogenated and unhalogenated of many types
Inorganic chemicals - metals
Atmospheric: airborne particles and their properties, radon, VOCs
Those classified by physiochemical properties or Material Safety Data Sheets (MSDS)
Emerging chemicals of interest: endocrine-disrupting compounds, pharmaceuticals & personal care products, Nanoparticles/Nanotechnology, bioaccumulating & persistent

II. Persistence, occurrence, general concepts of fate and transport
Where and how are chemicals generated? What happens to them?
Chemical releases to air, water, land. Resources on the web.

III. Basic concepts
source reduction and waste minimization, replacements, best management practices, major environmental laws

IV. Toxicological Considerations for human and ecological risk assessment:
Dose-response relationships, thresholds, risk factors, reproductive toxicants, carcinogens, and other endpoints; bioavailabilty, bioaccumulation, biomagnification

V. The Risk Assessment Process
1. Exposure Assessment
2. Human Health Risk Assessment
3. Ecological Risk Assessment
4. Remedial Action

VI. Ethics, Advocacy, Citizen’s Civil Actions, Right-to-Know
Corporate ethics [“The Corporation”]; Environmental justice movement, environmental advocacy groups

Policy on Academic Misconduct
The University's regulations that relate to academic misconduct will be fully enforced. Any student suspected of cheating will be referred to the Academic Conduct Committee. Students found guilty of academic misconduct may face suspension or permanent dismissal.