CHM 158 – General Chemistry II - Laboratory
Part of a 5 Credit Course
Winter 2008
Location: 230/240 HHS

**Time:**
Section 004 CRN 10305  Tuesday 1:30 – 4:30 pm
Section 005 CRN 10307  Tuesday 5:30 - 8:30 pm

**Instructor:** John V. Seeley  E-mail: seeley@oakland.edu
Office: 267 SEB    Office Phone: (248) 370-2329
Office Hours: By Appointment

**Catalog Description:**
Integrated lecture-laboratory. Chemical reactions, kinetics, equilibrium, acid-base chemistry, thermodynamics and electrochemistry.

**Course Prerequisites:** CHM 144 and 147 or 157.

**General Course Overview:**
CHM 158 is a lecture-laboratory course that represents the second half of a two semester course in general chemistry. This syllabus covers the laboratory portion of the class. CHM 158 focuses on the factors that influence the rates and equilibrium of chemical reactions. Experiments are performed and reported in groups of three to four students. A student’s performance in this class contributes 20% to his or her final score in CHM 158. A detailed description of this laboratory course follows.

**Course Documents:**
Most of the information describing the course and the experiments is available on the Moodle website associated with this class. In some cases, students are required to print these documents and bring them to class (for example, the experiment data sheets and grading forms).

**Required Materials:**
Safety Goggles: Students must supply their own safety goggles. Safety glasses are not allowed.
A laboratory notebook.

**Helpful But Not Required:** Data analysis by the group is easiest if one group member can bring a laptop computer to lab.
**Laboratory Groups:** The experiments will be performed in groups of three to four students. The lab groups will be assigned on the first day of class. Every student is expected to make an equal contribution to the execution of the laboratory experiments and to the production of the reports. The instructor should be informed of any “free-loading” group members. Students will have an opportunity to rate the performance of their team members. The average rating received by each student will partially determine the grade received by the student.

**Make-up Laboratories:** Make-up laboratory experiments will only be granted for students who have experienced extreme circumstances and notified the instructor within 12 hours of the missed lab. The instructor is the sole judge of the circumstances that qualify as a condition sufficient for a make-up. If the instructor is not notified within 12 hours of a missed lab, then the student will not be allowed to make-up the laboratory. Failure to attend labs places an extra burden on a student’s laboratory group members. Groups should report students that miss more than one laboratory session. **Students that miss more than one lab period you will be given a score of 0% for the laboratory portion of CHM 158.**

**Grading:** Grades will be based on the total points earn by the student. The final percentage will be forwarded to the lecture instructor for incorporation into the overall CHM 158 grade. Each group will turn in seven laboratory reports. These reports will be given one grade. The grades will then be individually adjusted for each laboratory group member based on the peer-evaluation scores. The first laboratory will not be impacted by the peer evaluations. Labs 2-4 will have a 25, 50, and 75% peer impact factors, respectively. Labs 5-7 will have 100% peer impact factors. Lab reports are due at the beginning of the lab period that follows the completion of an experiment. Late reports lose credit as follows: 1 day late = -10% of possible total points; each additional day late = -10% of possible points. Note: 5 minutes late and 24 hours late both count as “1 day late”). Lab report grades will be posted throughout the semester on the Moodle website. Students will be allowed to look at their graded reports in the laboratory, but they will not be allowed to take them from the laboratory. Quizzes will also be given at the conclusion of Experiments 2, 3, 6, and 7. 10% of a student’s final grade will be assigned by the instructor based on each individual student’s attendance, participation, behavior, preparation, etc.

**Extra Credit or Dropped Scores:** There is no extra credit or dropped scores.

**Closing of the University:** In the event that the University closes on a day when class is held forcing the class to be cancelled, the scheduled events for the cancelled class day will be conducted on the next meeting.
**Academic Conduct Policy:** Cheating on examinations, plagiarism, falsifying reports/records, and unauthorized collaboration are considered serious breaches of proper academic conduct. It is the student’s responsibility to consult the instructor if uncertainty exists on what may or may not be deemed misconduct. Falsifying laboratory data or using the data of others is considered to be a serious violation of the academic conduct policy. The Oakland University policy on academic conduct will be strictly followed with no exceptions. See catalog under Academic Policies and Procedures. **Students found guilty of academic misconduct by the Academic Conduct Committee will receive a course grade of 0.0. Note: This grade is not just for the laboratory portion of the class but for the entire 5 credit hours of CHM 158.**

**Safety Requirements:** This laboratory will strictly adhere to the code of safe conduct outlined in the “Oakland University Undergraduate Chemical Laboratory Safety Manual”. This manual is available on the course website. Students are required to read and understand this manual. Students must complete and pass a safety quiz that is part of the Safety Manual prior to starting the first experiment. Students that do not follow safe practices will be expelled from the course.

**Laboratory Waiver:** If you are repeating this course, you may be able to waive the laboratory portion of the current course. You may choose to use the laboratory scores from the first course if: (1) your average in the laboratory portion of that course was at least 75% and (2) you were enrolled in that course no more than three years ago. If you wish to apply for a laboratory waiver, you must complete a General Chemistry Laboratory Waiver form. These forms are available in the Department of Chemistry office, 260 Science and Engineering Building (SEB). This laboratory waiver form must be completed and returned to your current lecture instructor during the first week of the current semester. You must attend the laboratory portion of the course until the waiver is approved.

**Add/Drops:** The University add/drop policy will be explicitly followed. It is the student’s responsibility to be aware of the University deadline dates for dropping the course. If you drop the class you must still check-out. **If you drop without checking-out you will be fined $25.**

**Special Considerations:** Students with disabilities who may require special considerations should make an appointment with campus Disability Support Services. Students should also bring their needs to the attention of the instructor as soon as possible.
Additional Information Regarding CHM 158 Laboratory

Group Learning

Much of the course work that you do will be done as a member of a team. You will be assigned to a team during the first laboratory period. It is important that you understand some of the goals and benefits of group learning.

A survey (American Society for Training and Development and the U.S. Dept. of Labor, 1988) of major businesses and industrial firms, concluded that if students are to reach the workplace well equipped to cope with the “real world” they must have the opportunity to learn:

- how to learn
- how to listen and communicate orally
- adaptability based on creative thinking and problem solving
- group effectiveness characterized by interpersonal skills and teamwork
- organizational effectiveness and leadership

These skills are among the things that you should learn in Chemistry 158, in addition to becoming familiar with the process of experimentation and learning some chemistry. Research has shown that most students learn better, develop interpersonal skills and enjoy a course more when it is conducted in a group learning environment. This does not mean that students simply work side by side on a problem, or the best student works while the others watch. Rather, a group that is functioning well will exhibit interdependence. Everyone contributes something to the group. The more effort that you put into the group, the more you are likely to be rewarded in terms of skills learned and, ultimately, in terms of your grade.

When people work in groups, it is important that they be able to communicate with each other without conflict. Sometime during the semester a group member may say or do something you disagree with or something that annoys another student. Please bear in mind that it is ok to be critical of ideas but it is not ok to be critical of the person expressing the idea. If you criticize the person it is almost certain to cause hard feelings and affect group functioning.

Try to avoid win/lose situations. The goal of this lab is to develop problem solving skills, not to engage in conflicts where one person’s ideas dominate. In the context of solving problems in the general chemistry lab, group members may feel temporarily perplexed and discouraged. It is important to know that being temporarily perplexed is a natural state of problem solving. If you know immediately how to solve a problem, then it is an exercise and not a problem.
WHAT YOU SHOULD DO

Before Lab.

You need to be prepared. At a *minimum* you should:

- Study the relevant sections of this lab procedure and basic skills document and any other assigned reading material. You need to think about what you will do at each stage of the experiment as you read it. Note any questions you have or points of uncertainty. You should discuss these with your group members and if questions still arise with the instructor or teaching assistant. These labs are designed for you to “discover” many things so don’t expect the instructor or teaching assistant to directly answer your question if they relate to something that you need to find experimentally.

- Listen carefully to any comments about future labs that the instructor or teaching assistant makes during laboratory discussion periods. Note you will not be told what to do for the experiments or what results you will find -- part of your job is to figure out these details.

- Complete the pre-laboratory assignment (in this lab manual). This must be turned in at the beginning of the laboratory period. This is how we know that you have prepared for the laboratory. If you do not complete your pre-lab before coming to lab, you will be asked to stay outside the lab until the pre-lab is completed and then you can only receive a maximum of 50% of the total pre-lab points. Note: unlike CHM 157 the answers to the pre-lab will not be posted.

Students often find it helpful to work in groups when preparing for laboratory. Since how well you do depends, in part, on the data that your classmates collect, everyone benefits when their classmates are better prepared. If the objective of the lab or the background material is not clear, seek assistance before lab. Possible sources of assistance are your team members, other classmates, the instructor, and the teaching assistants. You may submit a single prelab sheet for your group. This sheet should show the names of all group members and the group number. If anyone disagrees with the answers on the group sheet, he/she may submit an individual sheet.

During Lab.

Record all of your observations. Chemistry is an experimental science. If you don’t record your observations you aren’t doing chemistry. This lab manual contains forms that you can use to record your data. If you don’t like these forms, you can prepare your own (make sure that you record all of the necessary data). Follow the correct laboratory procedures you learned in CHM 157 for recording data. (Use ink; don’t erase errors but strike out with a single line so old value is still legible and write corrected value next to it; be neat so all data is legible; use proper number of significant figures; show units, etc.) *At the conclusion of each lab period, you need to have you TA initial the data forms that you have completed (all of the data forms have a line for TA initials).*
Your data form should not be changed once your TA has initialed it. These experimental data (together with other data measured by the rest of the class) will form the basis for your post-lab discussion and for your post-lab report. Each team member should record all data on his/her data sheets. However, only one set of data sheets will be submitted with the group report.

**After Lab.**

**Quizzes**

Many experiments will be concluded with a short quiz. It is imperative that a student understands the experiment if they hope to do well on these quizzes.

**Lab Report.** Lab reports are due at the start of the lab period following the period of the post-lab discussion. Lab reports must be stapled in the upper left corner and include the following in the order shown:

1) grade sheet
2) pre-lab (if handed back)
3) data sheets
4) graphs
5) post-lab report
6) group member assessment sheets.

A single report may be submitted by each group and must show on the grade sheet page the names of all group members and the group number. If anyone disagrees with any part of the group report, he/she may submit an addendum to the report whose grade will replace that for the part in question of the group report. Addendums should be stapled at the back of the group report. For experiments with individual unknowns, the data sheets for the unknowns should be stapled at the back of the group report. Be sure these data sheets show your name and unknown number.
# Tentative Course Calendar

<table>
<thead>
<tr>
<th>Week #1</th>
<th>Course Overview, Safety, Check-In, Lab Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week #2</td>
<td>Experiment #1 - Kinetics: Part I</td>
</tr>
<tr>
<td>Week #3</td>
<td>Experiment #1 - Kinetics: Part II</td>
</tr>
<tr>
<td>Week #4</td>
<td>Experiment #2 - The Equilibrium Constant: Part I</td>
</tr>
<tr>
<td>Week #5</td>
<td>Experiment #2 - The Equilibrium Constant: Part II</td>
</tr>
<tr>
<td>Week #6</td>
<td>Experiment #3 - Acids and Bases: Part I</td>
</tr>
<tr>
<td>Week #7</td>
<td>Experiment #3 - Acids and Bases: Part II</td>
</tr>
<tr>
<td>Week #8</td>
<td>Experiment #4 - Buffers: Part I</td>
</tr>
<tr>
<td>Week #9</td>
<td>Experiment #4 - Buffers: Part II</td>
</tr>
<tr>
<td>Week #10</td>
<td>Experiment #5 - Modeling Acids</td>
</tr>
<tr>
<td>Week #11</td>
<td>Experiment #6 - Thermochemistry</td>
</tr>
<tr>
<td>Week #12</td>
<td>Experiment #7 - Electrochemistry</td>
</tr>
<tr>
<td>Week #12</td>
<td>Experiment #7 - Electrochemistry</td>
</tr>
<tr>
<td>Week #14</td>
<td>Check-out</td>
</tr>
</tbody>
</table>